

Microwave Sensing From Geostationary Orbit

Al Gasiewski NOAA Environmental Technology Laboratory Boulder, CO, USA

David Staelin

Massachusetts Institute of Technology

Cambridge, MA, USA

Bizzarro Bizzarri
CNR Istituto Scienze dell'Atmosfera e del Clima (ISAC)
Rome, Italy

GMSWG* Concept Summary

ETCL SE LINGTON

GEosynchronous Microwave (GEM) Sensor

- Baseline system using 54, 118, 183, 380, and 424 GHz with ~2meter diameter aperture.
- ~16 km subsatellite resolution (~12 km using oversampling) above 2-5 km altitude at highest frequency channels.
- The 380 and 424 GHz channels selected to map precipitation through most optically opaque clouds at sub-hourly intervals.
- Temperature and humidity sounding channels penetrate clouds sufficiently to drive NWP models with hourly data.
- Estimated 2002 costs: \$31M non-recurring plus ~\$28M/unit.

* Geosynchronous Microwave Sounder Working Group, Chair: D.H. Staelin (MIT)

GEM Spectral Selection

GEM Vertical Response

Klein & Gasiewski, JGR-ATM, July 2000.

GEM Probing Depths

Similar Channel (183 / 325 GHz) Response to Clouds

GEM Spatial Resolution

Aperture size (m)								Tolerance				
Frequency	(GHz)	0.1	0.25	0.5	1	1.5	2	4.4	8	15	30	(mm)
6.8	W	19611.0	7844.4	3922.2	1961.1	1307.4	980.5	445.7	245.1	130.7	65.4	1.764
10.7	W	12463.1	4985.2	2492.6	1246.3	830.9	623.2	283.3	155.8	83.1	41.5	1.121
18.7	W	7131.3	2852.5	1426.3	713.1	475.4	356.6	162.1	89.1	47.5	23.8	0.641
37.0	W	3604.2	1441.7	720.8	360.4	240.3	180.2	81.9	45.1	24.0	12.0	0.324
56.0	02	2381.3	952.5	476.3	238.1	158.8	119.1	54.1	29.8	15.9	7.9	0.214
89.0	W	1498.4	599.3	299.7	149.8	99.9	74.9	34.1	18.7	10.0	5.0	0.135
118.8	02	1123.0	449.2	224.6	112.3	74.9	56.1	25.5	14.0	7.5	3.7	0.101
166.0	W	803.3	321.3	160.7	80.3	53.6	40.2	18.3	10.0	5.4	2.7	0.072
183.3	H2O	727.5	291.0	145.5	72.8	48.5	36.4	16.5	9.1	4.9	2.4	0.065
220.0	W	606.2	242.5	121.2	60.6	40.4	30.3	13.8	7.6	4.0	2.0	0.055
325.1	H2O	410.2	164.1	82.0	41.0	27.3	20.5	9.3	5.1	2.7	1.4	0.037
340.0	W	392.2	156.9	78.4	39.2	26.1	19.6	8.9	4.9	2.6	1.3	0.035
380.2	H2O	350.7	140.3	70.1	35.1	23.4	17.5	8.0	4.4	2.3	1.2	0.032
424.8	02	313.9	125.6	62.8	31.4	20.9	15.7	7.1	3.9	2.1	1.0	0.028
448.0	H2O	297.7	119.1	59.5	29.8	19.8	14.9	6.8	3.7	2.0	1.0	0.027
556.9	H20	239.5	95.8	47.9	23.9	16.0	12.0	5.4	3.0	1.6	0.8	0.022
620.0	H2O	215.1	86.0	43.0	21.5	14.3	10.8	4.9	2.7	1.4	0.7	0.019
752.0	H20	177.3	70.9	35.5	17.7	11.8	8.9	4.0	2.2	1.2	0.6	0.016
916.2	H20	145.6	58.2	29.1	14.6	9.7	7.3	3.3	1.8	1.0	0.5	0.013
987.9	H2O	135.0	54.0	27.0	13.5	9.0	6.7	3.1	1.7	0.9	0.4	0.012

- 3-dB best resolution degrades by ~1.3x to ~21 km at 50° latitude.
- Oversampling by ~2x above Nyquist expected to recover ~30-40% of this lost resolution for high SNR cases.

GEM Sensitivity & Scan Mode

• Regional (1500 x 1500 km²) : 12-15 minutes

Band (GHz)	3-dB IFOV (km, SSP)	Deconvolved Resolution (km, SSP)	∆T _{RMS} (K)	∆T _{RMS} Required (K,SNR=100)
50-56	138.6	~104	0.04-0.1 🗸	0.1-0.6
118.705	60.2	~45	0.07-0.9 ~	0.1-0.6
183.310	41.9	~31	0.06-0.2✔	0.3-0.6
380.153	20.5	~16	0.03-3.4 *	0.3-0.5
424.763	16.4	~12	1.0-9.5 *	0.4-0.6

Assumptions:

- Averaging (downsampling) of beams to fundamental deconvolved resolution.
- * Further reductions in ∆T_{RMS} achievable via additional downsampling and/or time averaging.
- CONUS imaging time (3000 x 5000 km²): 90 minutes

GEM Simulated Imagery

Hurricane Bonnie

August 26, 1998 1500 UTC

MM5/MRT Reisner 5-phase with DO RT model at 424.763+/-4.0 GHz

GEM Simulated Imagery

Spectral Response

GEM Jacobian for Radiance Assimilation

Hurricane Bonnie, August 26, 1998, 1500 UTC MM5/MRT Reisner 5-phase with DO RT model at 424.763+/-4.0 GHz

GEM Jacobian for Radiance Assimilation

Hurricane Bonnie, August 26, 1998, 1500 UTC MM5/MRT Reisner 5-phase with DO RT model at 424.763+/-4.0 GHz

GEM Jacobian for Radiance Assimilation

Hurricane Bonnie, August 26, 1998, 1500 UTC MM5/MRT Reisner 5-phase with DO RT model at 424.763+/-4.0 GHz

AMSU Precipitation Retrievals

NOAA-15 AMSU with neural net retrieval, 50 km resolution

Staelin & Chen, *IEEE TGARS*, September 2000.

Rapid Precipitation Evolution

March 5-6 2001 snowstorm observed using AMSU-B

Rapid evolution of snowstorm as seen by AMSU-B on the NOAA-15 and NOAA-16 satellites

4 and 8 hr time gaps

Major
evolution
can occur
on short
time scales!

Airborne SMMW Imagery

Maritime convection observed at 20 km altitude.

Many cells missed at 89 GHz!

Gasiewski, et al, Proc. 1994 IGARSS, Pasadena, USA.

PSR/CX: 5.82-6.15 10° (v,h) 10° 1999 (C) 6.32-6.65 (v,h) 10° 6.75-7.10 (v,h,U,V)7.15-7.50 (v,h) 10° 2002 (CX) 10.6-10.8 **7**º (v,h,U,V)10.68-10.70 **7**° (v,h)9.6-11.5 um IR (v+h) **7**°

GEM Airborne Simulator
PSRCX and PSR/S Scanhead Suite
& Aircraft Compatibility

GEM Antenna Studies

Main Beam Microscanning

5 beam scan (0.14°) at 424 GHz from tilting/decentering subreflector and 2-m reflector (MIT/Lincoln Labs)

Concept design of GEM antenna with tilting/decentering subreflector (Ball ATC)

GEM Cost/Benefit for GPM

#Additional Drones	Repeat Time	Cost (\$N	1)
1	2.4 (hrs)	40	
2	2.0	80	Single HS cost break-point
3	1.7	120	
4	1.5	160	
5	1.3	200	
6	1.2	240	Global cost break-point
7	1.1	280	
8	1.0	320	
9	55 (mins)	360	
10	51	400	
15	38	600	
20	30	800	
25	25	1000	
30	21	1200	
35	18	1400	
40	16	1600	

Assumptions: GEM recurring cost of \$30M + \$60M bus & launch = \$90M

TMI-class passive drone cost of \$10M + \$30M bus+launch = \$40M 3 NPOESS + GPM PR as GPM baseline system – costed as fixed

3 GEMs required for global tropical/midlatitude coverage

Recent U.S. GEM Proposals

- Geostationary Microwave (GEM) Observatory –
 Concept proposal to NASA/HQ in response to Instrument
 Incubator Program AO Based on 2-meter antenna and
 channels at 54/118/183/380/424 GHz (Staelin et al, 1998).
- EO-3 Geosynchronous Microwave (GEM) Observatory New Millennium proposal submitted by NOAA/ETL, NASA/GSFC, MIT/LL to NASA/HQ. Based on a GEM demonstration unit with spatial resolution of 13-20 km, 2-meter antenna (Gasiewski et al, 1998).
- GEosynchronous Microwave (GEM) Precipitation Sounder – Phase B proposal submitted by NASA/LaRC, NOAA/ETL, MIT/LL to NASA/HQ Instrument Incubator Program. Focused on antenna technology development and demonstration (Lawrence et al, 2001).

Recent U.S. GEM Proposals (cont'd)

 Geosynchronous Microwave (GEM) Observatory for Hydrological Imaging and Profiling — Technology development proposal to NASA/HQ in response to Instrument Incubator Program AO — Based on 2-meter antenna and channels at 54/118/183/380/424 GHz (Gasiewski et al, 2002). Includes industry-based development of prototype microscanning subreflector.

GEM Roadmap to Operations

GOMAS Proposal to ESA

- Proposal to ESA Earth Explorer Opportunity Missions: "Geostationary Observatory for Microwave Atmospheric Sounding" – submitted Jan 2002.
- PI: B. Bizzarri, many European and U.S. partners.
- Based on U.S. GEM baseline design, but free flyer with larger antenna (3-m) to compensate for application at higher European latitudes (antenna cost ~d^{2.5}).
- 3-year science demo phase, 5-yr design lifetime, 10 km best resolution w/o deconvolution, 15 minute best update. Launch ~2008+, cost 160 M€ total, including ground segment
- To be considered for further scientific and technological study within ESA

GEM Summary

- GEM will be a cost-effective AMSU-like sounder/imager but with time-resolved observations of precipitation – complementary to HES, GIFTS.
- Convective PR anticipated to be measurable over both land and water along with sounding products within clouds, ~15 km midlatitude spatial resolution.
- GEM concept study completed, antenna and scanning technology under development (MIT/LL, NOAA/ETL)
- Aircraft demonstrations under development (NOAA, MIT)
- RT model and retrieval simulations in progress (NOAA)
- European GOMAS concept proposal submitted to ESA (Jan 2002), GOMAS science studies planned (2003).
- Demonstration of operational system possible within GPM and NPOESS timeframe. GOES R+ ~2012+ (?)